

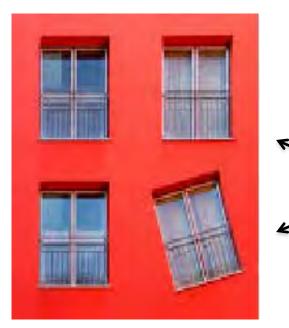
Power Analysis 101 sample size post hoc hypothesis testing alpha level Type II error Type I error freeware balance

Richard G. Lomax Susie Mauck Robert Nichols

- Introduction to Power
- Importance of Power
- Determinants of Power
- Types of Power
- Power Analysis Software

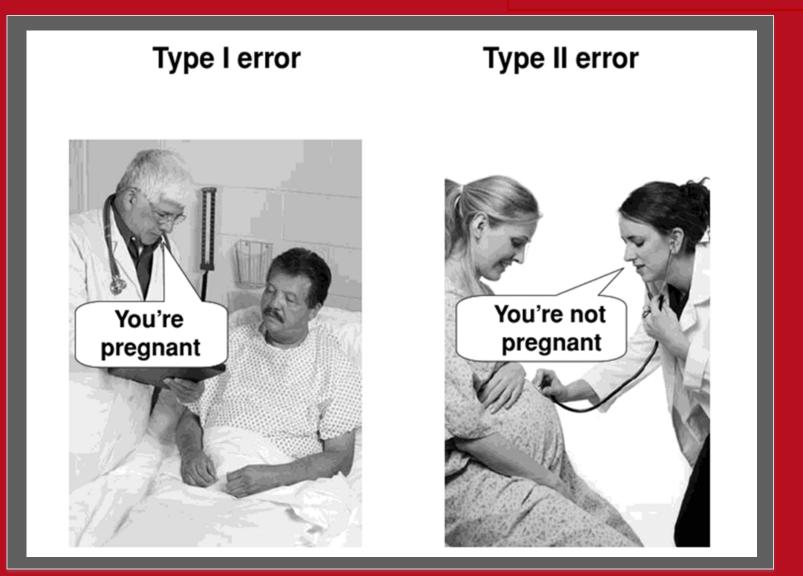
Outline

What is Power?


TYPE I ERROR

Finding a difference when a difference isn't there.

TYPE II ERROR


<u>Not</u> finding a difference when a difference is there.

Type I error: Thinking they are different when they are not.

Type II error: Thinking they are <u>not</u> different when they are.

From The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results by Paul D. Ellis, 2010.

Null = no rain

State of Nature

Decision

	Fail to Reject H ₀ (No umbrella)	Reject H₀ (Take umbrella)
H ₀ is true (No rain)	Correctly fail to reject H ₀	Type I error – look silly
H ₀ is false (Rains)	Type II error – get wet	Correctly reject H ₀ POWER!

THE CHIO STATE UNIVERSITY

Introduction to Power

3

		Deci	?	
		Fail to Reject H ₀ (don't carry umbrella)	(carry umbrella)	
State of Nature (Reality)	H ₀ is TRUE (no rain)	Correct Decision (no umbrella, no rain; thus OK) $(1 - \alpha)$	Type I Error (bring umbrella, no rain; thus look silly) (α)	
	H ₀ is FALSE (rains)	Type II Error (no umbrella, rains; thus get wet) (β)	Correct Decision (bring umbrella, rains; thus OK) $(1 - \beta) =$ Power	

Null = no rain

You need to balance the two types of error...

TYPE I ERROR

TYPE II ERROR

Decision Making

Null hypothesis – hurricane won't hit NYC Alternative hypothesis – hurricane hits NYC

Mayor Bloomberg could risk making a Type I error:

- Concludes Hurricane Sandy is coming.
- Orders evacuation.

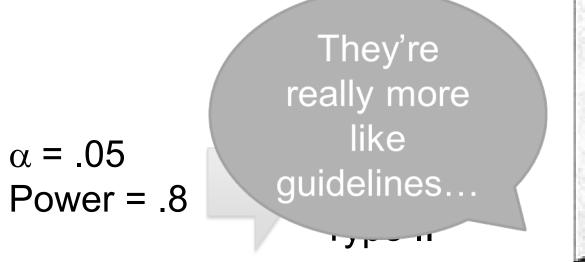
Decision Making

Null hypothesis – hurricane won't hit NYC Alternative hypothesis – hurricane hits NYC

Mayor Bloomberg could risk making a Type II error:

- Concludes Hurricane Sandy is not coming.
- Does nothing.

Which is worse? It depends...



What is the appropriate level of power?

α = .05 Power = .8

The five-eighty convention...

Jacob Cohen, 1923 – 1998 http://archpsyc.jamanetwork.com

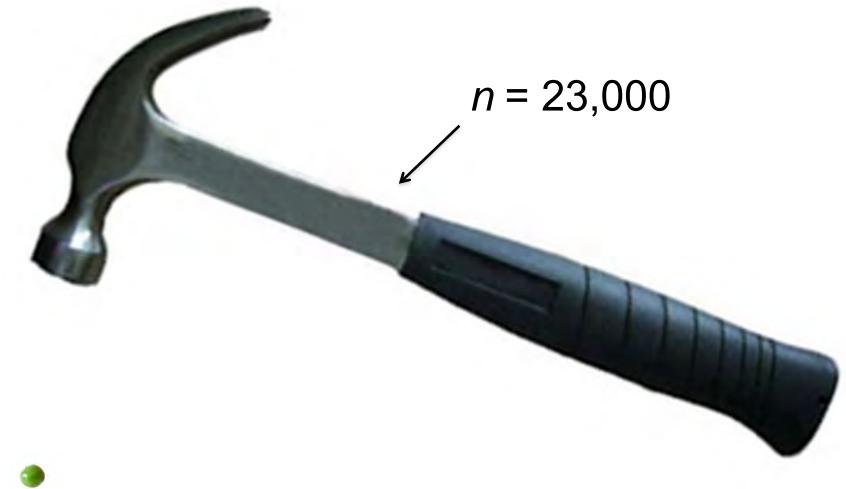
Power $(1 - \beta)$:

Power of .8

comfortable accepting a 20% chance you will miss something that is really there

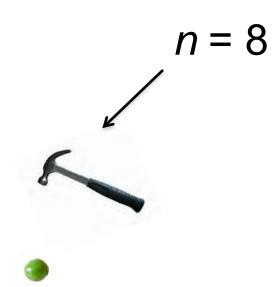
Why is Power Important?

a priori power analysis can protect against wasting resources.



http://commonsense4worldequality.wordpress.com/2011/12/12/wasting-resources-is-wasting-time-to-come-up-with-real-solutions/

Importance of Power


Too much power...

Importance of Power

Too little power...

a priori power analysis is often required for dissertations, papers, & grant proposals...

"Sorry, you guys didn't do a power analysis, so no grant money for you..."

20

money.gif

mages/grant

Whoa.

a priori power analysis is an indication of how well you have planned...

Poorly planned studies rarely yield meaningful results...

Determinants of Power

Power is largely determined by...

- 1. Level of Significance (α)
- 2. Sample size (*n*)
- 3. Effect size (e.g., Cohen's *d*, *r*, ω , η^2 , partial η^2)

Power can be increased by...

1. Increasing α

Power can be increased by

2. Increasing sample size

$n \longrightarrow \mathbf{N}$

3. Power can be increased by increasing effect size, but effect size is not always within the researcher's control.

http://teachers.bergencatholic.org/faculty/hornerj/literature3h/franken stein%20movie%20shots/frankensteinscreenshots.htm

However...

Your research design can improve your effect size and therefore increase power.

For example:

- Add a covariate
- Use the most reliable measures available
- Include multiple sites

How do I know what the effect size is?

Effect size (e.g., Cohen's *d*, *r*, ω , η^2 , partial η^2)

- Prior research
- Estimate a range
- Pilot study

Table 2.1	Cohen	i's effect.	size l	benchmarks
-----------	-------	-------------	--------	------------

	Relevant effect size	Effect size classes		
Test		Small	Medium	Large
Comparison of independent means	$d, \Delta, \text{Hedges' } g$.20	.50	.80
Comparison of two correlations	q	.10	.30	.50
Difference between proportions	Cohen's g	.05	.15	.25
Correlation	r	.10	.30	.50
	r ²	.01	.09	.25
Crosstabulation	w, φ, V, C	.10	.30	.50
ANOVA	f	.10	.25	.40
	η^2	.01	.06	.14
Multiple regression	R^2	.02	.13	.26
	f^2	.02	.15	.35

Notes: The rationale for most of these benchmarks can be found in Cohen (1988) at the following pages: Cohen's d (p. 40), q (p. 115), Cohen's g (pp. 147–149), r and r^2 (pp. 79–80), Cohen's w (pp. 224–227), f and η^2 (pp. 285–287), R^2 and f^2 (pp. 413–414).

From The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results by Paul D. Ellis, 2010.

Two Types of Power

A power analysis can either be done ...

•<u>before</u> data are collected

• *a priori* or prospective power analysis

Or... a power analysis can be done ...

•after data are collected

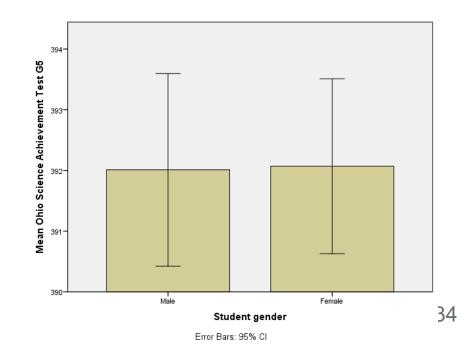
post hoc or retrospective power analysis

The Abuse of Power: The Pervasive Fallacy of Power Calculations for Data Analysis

John M. HOENIG and Dennis M. HEISEY

Post Hoc Power Analysis: An Idea Whose Time Has Passed?

Marc Levine, Ph.D., and Mary H. H. Ensom, Pharm.D., FASHP, FCCP

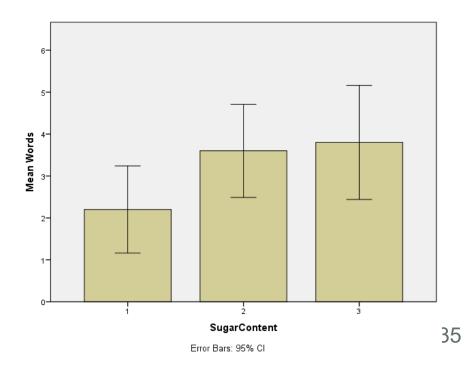

The Pitfalls of Post Hoc Power

n = 2,600 students

Is there a gender difference on the 5th grade science test?

Results:

p = .658Effect size partial $\eta^2 = .01$ Observed power = .07



The Pitfalls of Post Hoc Power

n = 15 subjects
5 in each group
Does the amount of sugar ingested affect memory?

Results:

p = .055Effect size partial $\eta^2 = .384$ Observed power = .57

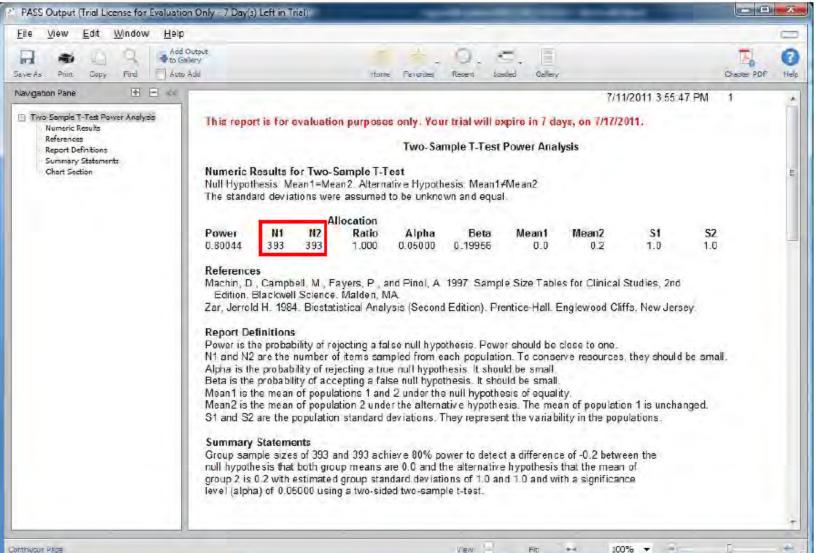
Old School Power

STATISTICAL POWER ANALYSIS for the BEHAVIORAL SCIENCES Second Edition Jacob Cohen EA

statement for all all

				P	ower of	Table 8. F test a		5, u = 1!	5				
-								f	-		_	-	
	- 10-				-	140	-		1.0				-
n	Fc	.05	.10	.15	.20	.25	.30	.35	.40	.50	.60	.70	.8
234	2.352	05	05	06	07	80	10	12	14	20	28	39	5
3	1.992	05	05	07	09	н	15	19	25	39	57	74	8
4	1,880	05	06	08	11	15	20	28	37	58	78	92	9
5	1.826	05	07	09	13	19	27	38	50	74	91	98	
6	1.794	05	07	10	15	23	34	47	61	85	96	*	
7	1.772	06	07	11	18	28	41	56	71	92	99		
8	1.757	06	08	12	21	33	48	65	79	96	*		
9	1.745	06	08	14	24	38	55	72	85	98			
10	1.736	06	09	15	27	43	61	78	90	99			
ii -	1.729	06	09	17	30	47	67	83	93	*			
12	1.724	06	10	18	33	52	72	87	96				
13	1.719	06	10	20	36	57	77	90	97				
14	1.715	06	11	21	39	61	81	93	98				
15	1.711	06	n	23	42	65	84	95	99				
16	1.708	06	12	25	45	69	87	96					
17	1.706	07	12	26	48	72	90		99				
		07	13	28	51			97	*				
18	1.704	07	14	30	54	76 78	92 93	98 99					
20	1.700	07	14	31	57	81	95	99					
	1.698		15	33	60	84	96	99					
21		07						#					
22	1.696	07	16	35	63	86	97						
23 24	1.695	07 07	16	37 39	65 68	88 89	97 98						
25	1,693	07	17	40	70	91	98						
26	1.692	07	18	42	72	92	99						
27	1.691	08	19	44	74	93	99						
28 29	1,690	80 80	20 20	46	75 78	94 95	99 *						
4.7	1,009	00	20	-1	10	32	-						
30	1.688	08	21	49	80	96							
31	1.687	08	22	51	82	97							
32	1.687	08	22	52	83	97							
33	1.686	08	23	54	84	98							
34	1.686	08	24	56	86	98							
35	1.685	09	25	57	87	98							
36	1.684	09	25	59	88	99							
37	1.684	09	26	60	89	99							
38	1,683	09	27	62	90	99							
39	1.683	09	28	63	91	99							

8.3 POWER TABLES



Power Software

		Software Version a	nd Pricing		
Software	Current Version	Pricing	A Priori	Post Hoc	Graphics
G*Power	3.1.9	Free	\checkmark	 Image: A set of the set of the	✓
PASS	13	\$795	✓	~	\checkmark
SAS	9.3	Free for OSU students. Contact OCIO for Faculty/Staff licenses	~		✓
Stata	13	Gradplan prices vary by University and STATA module	~	✓	
SPSS/Statistics	21	Free for OSU students. Contact OCIO for Faculty/Staff licenses		✓	
SPSS/SamplePower	3.0.1	\$720/year	\checkmark		\checkmark
Optimal Design	3.01	Free	✓		\checkmark

	Softw	are Version and Pricing	
Software	Current Version	Pricing	Website
G*Power	3.1.9	Free	http://www.gpower.hhu.de/en.html
PASS	13	\$795	http://www.ncss.com/software/pass/
SAS	9.3	Free for OSU students Contact OCIO for Faculty/Staff licenses	
Stata	13	Gradplan prices vary by University and STATA module	http://www.stata.com/order/new/ed u/gradplans/campus-gradplan/
SPSS/Statistics	21	Free for OSU students Contact OCIO for Faculty/Staff licenses	
SPSS/SamplePower	3.0.1	\$720/year	http://www- 03.ibm.com/software/products/en/sp ss-samplepower
Optimal Design	3.01	Free	http://sitemaker.umich.edu/group- based/optimal_design_software

Screenshots of PASS

41

Screenshots of SPSS SamplePower

Group	Population Standard Mean Deviation	N Per Standard Group Error	95% 95% Lower Upper	
Raw Difference	0.2 . 1.0 .	394 0.07	0.06 0.34	
Alpha= 0.050, Tails= 2		Power	80%	
Welcome		X Summary - P	ower	×
and precision. To move this box use the t	ead you through the steps for computing title bar above panel, select Help from the menu.	1.00), sample : 0.801. This means tha	effect size (population mean differe sizes (394 and 394), and alpha (at 80% of studies would be expect g the null hypothesis that the two p	0.050, 2-tailed), power is ed to yield a significant

42

Power Analysis Software

Screenshots of SAS

The SAS System

The POWER Procedure Two-Sample t Test for Mean Difference

Fixed Scenario Ele	ments
Distribution	Normal
Method	Exact
Number of Sides	2
Group 1 Mean	0.2
Group 2 Mean	0
Standard Deviation	1
Nominal Power	0.8
Null Difference	0
Alpha	0.05

Compute Gro	
Actual Power	N Per Group
0.801	394

Peng, C. Y. J., Long, H., & Abaci, S. (2012). Power Analysis Software for Educational Researchers. *The Journal of Experimental Education, 80*(2), 113-136.

Power Analysis Software

Screenshots of STATA

	Stata 12 Syntax	
xample 1: One-sample t-test (2	2-tailed)	
Power = .80	Hypothesiswise $a = .05$	Effect Size $= 0.2$
Syntax:		

Output:

Estimated sample siz to hypothesized val	ze for one-sample comparison of mean lue
Test Ho: m = .2, wl	here m is the mean in the population
Assumptions:	
alpha	= 0.0500 (two-sided)
power	= 0.8000
alternative m	= 0
sd	= 1
Estimated required s	sample size:
n = 197	A. S. Lander

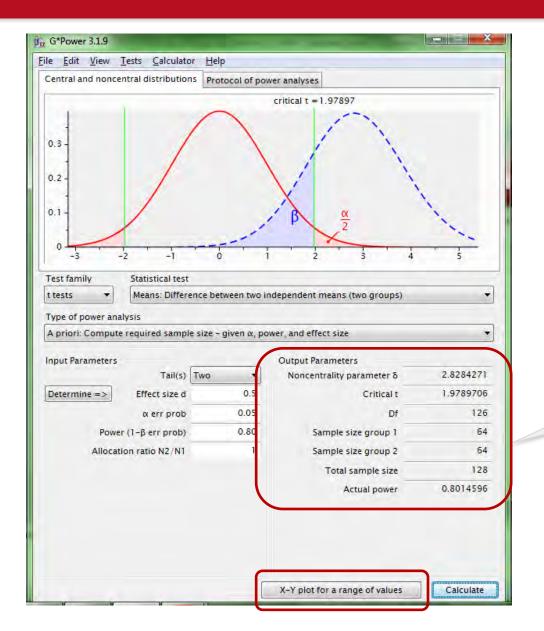
THE OHIO STATE UNIVERSITY

Screenshots of Optimal Design

Examples using G*Power

G*Power 3.1.9		Two-Sa
ile <u>E</u> dit <u>V</u> iew <u>T</u> o	ests <u>C</u> alculator <u>H</u> elp	
Central and noncen	tral distributions Protocol of power analyses	
		The default Test" is "C model." Use desired sta sample t-
Test family	Statistical test	Difference b
t tests 🔻	Correlation: Point biserial model	Difference
Type of power analy	Correlation: Point biserial model Linear bivariate regression: One group, size of slope	mea
A priori: Compute r Input Parameters	Linear bivariate regression: Two groups, difference between intercepts Linear bivariate regression: Two groups, difference between slopes Linear multiple regression: Fixed model, single regression coefficient Means: Difference between two dependent means (matched pairs) Means: Difference between two independent means (two groups)	
Determine =>	Means: Difference from constant (one sample case) Means: Wilcoxon signed-rank test (matched pairs) Means: Wilcoxon signed-rank test (one sample case) Means: Wilcoxon Mann Witcox test (her groups)	
	Actual power	7

Two-Sample t-test: A priori power

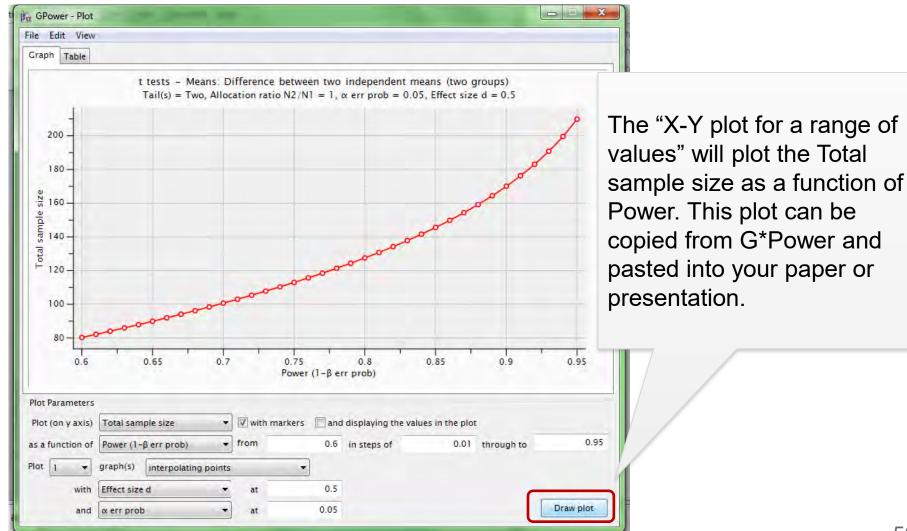

The default selection for "Statistical Test" is "Correlation: Point biserial model." Use the arrow to toggle to the desired statistical test. For the twosample t-test, we need "Means: Difference between two independent means (two groups)."

Power Analysis Software

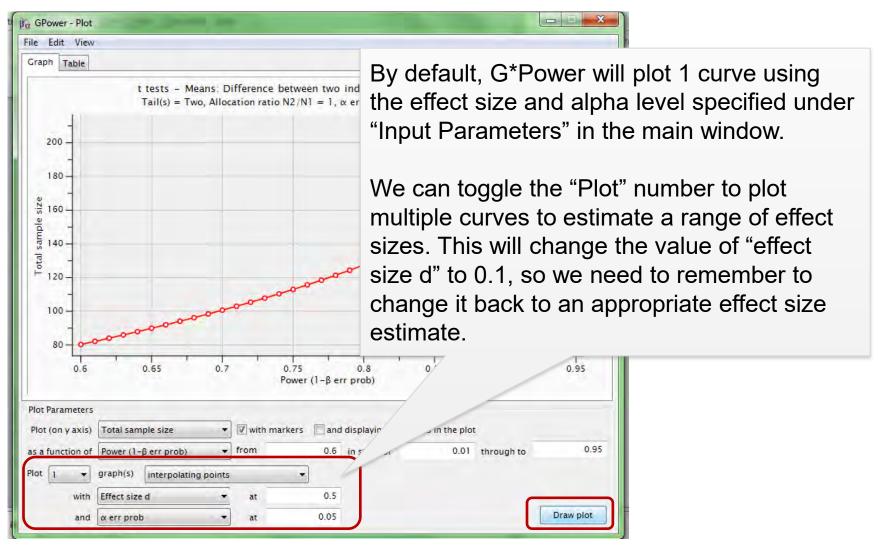
	<u>H</u> elp		
Central and noncentral distributions	Protocol of pow	er analyses	
Fest family Statistical test			
ttests 👻 Means: Differen	nce between two in	dependent means (two groups)	*
Type of power analysis			
A priori: Compute required sample			
A priori, computerequireu sample	size - given a, por	ver, and effect size	
	size - given a, por		
input Parameters	rwo 👻	ver, and effect size Output Parameters Noncentrality parameter δ	7
nput Parameters Tail(s) []		Gutput Parameters	?
nput Parameters Tail(s) []	rwa 🔻	Gutput Parameters Noncentrality parameter δ	
nput Parameters Tail(s) [] Determine => Effect size d	ſwo ▼ 0.5	Gutput Parameters Noncentrality parameter δ Critical t	7
nput Parameters Tail(s) Determine => Effect size d α err prob	「wo ← 0.5 0.05	Gutput Parameters Noncentrality parameter δ Critical t Df	?
Input Parameters Tail(s) Determine => Effect size d α err prob Power (1-β err prob)	rwo ▼ 0.5 0.05 0.80	Gutput Parameters Noncentrality parameter δ Critical t Df Sample size group 1	? ? ?
Input Parameters Tail(s) Determine => Effect size d α err prob Power (1-β err prob)	rwo ▼ 0.5 0.05 0.80	Gutput Parameters Noncentrality parameter δ Critical t Df Sample size group 1 Sample size group 2	? ? ? ?
Input Parameters Tail(s) Determine => Effect size d α err prob Power (1-β err prob)	rwo ▼ 0.5 0.05 0.80	Gutput Parameters Noncentrality parameter δ Critical t Df Sample size group 1 Sample size group 2 Total sample size	? ? ? ? ? ? ?
Input Parameters Tail(s) Determine => Effect size d α err prob Power (1-β err prob)	rwo ▼ 0.5 0.05 0.80	Gutput Parameters Noncentrality parameter δ Critical t Df Sample size group 1 Sample size group 2 Total sample size	? ? ? ? ? ? ?
Input Parameters Tail(s) Determine => Effect size d α err prob Power (1-β err prob)	rwo ▼ 0.5 0.05 0.80	Gutput Parameters Noncentrality parameter δ Critical t Df Sample size group 1 Sample size group 2 Total sample size	? ? ? ? ? ? ?
Input Parameters Tail(s) Determine => Effect size d α err prob Power (1-β err prob)	rwo ▼ 0.5 0.05 0.80	Gutput Parameters Noncentrality parameter δ Critical t Df Sample size group 1 Sample size group 2 Total sample size	? ? ? ? ? ? ?
Input Parameters Tail(s) T Determine => Effect size d α err prob Power (1-β err prob)	rwo ▼ 0.5 0.05 0.80	Gutput Parameters Noncentrality parameter δ Critical t Df Sample size group 1 Sample size group 2 Total sample size	? ? ? ? ? ? ?

Two-Sample t-test: A priori power

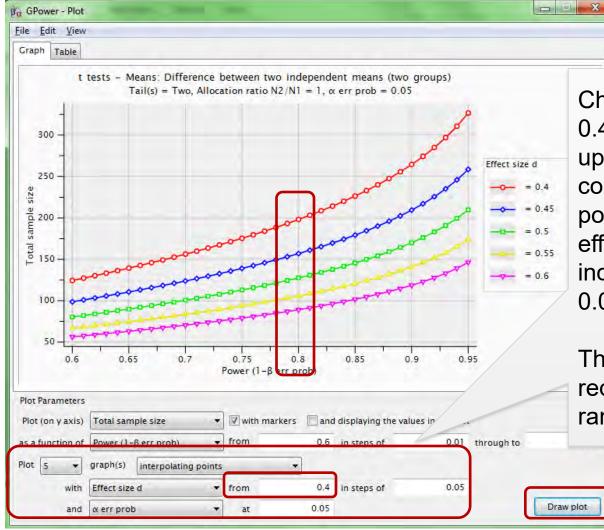
The "Input Parameters" for computing *a priori* power must be specified: 1.One versus two tailed test; 2.Anticipated effect size *d*; 3.Alpha level; 4.Desired power; 5.Allocation ratio (of *n*'s).



Two-Sample t-test: A priori power


The "Output Parameters" provide the relevant statistics given the input specified. Based on the parameters specified, we need a sample size of 128 for our two sample t-test.

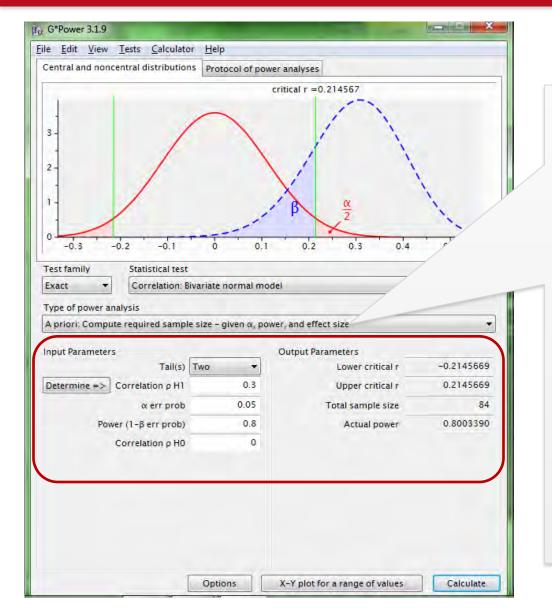
Power Analysis Software


Two-Sample t-test: A priori power

Two-Sample t-test: A priori power

Two-Sample t-test: A priori power

Change "Plot" to 5, "from" to 0.4, and click "Draw plot" to update the graph with the correct values. This will plot 5 power curves, starting with an effect size of 0.4 and increasing in increments of 0.05.


This allows us to estimate the required sample size for a range of effect sizes.

Correlation: A priori power

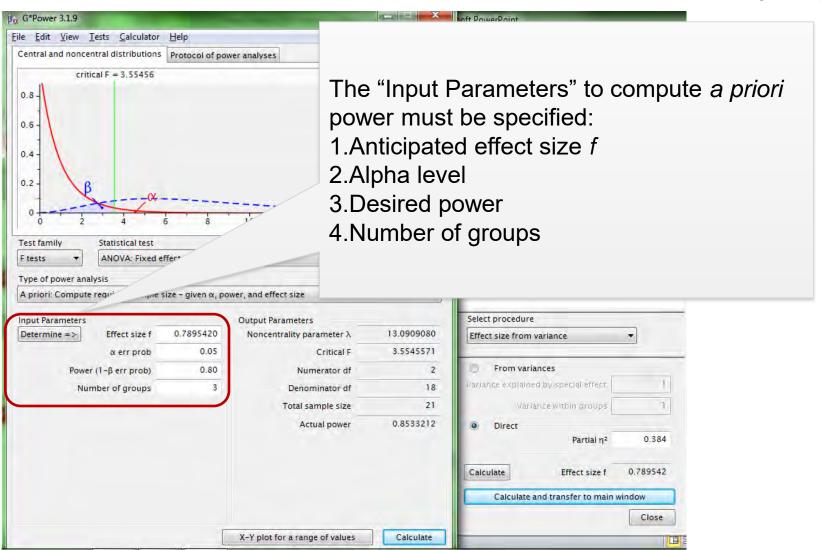
entral and nor	ncentral distribution	s Protocol of po	wer analyses	
est family	Statistical test			
Exact 🔻	Correlation: B	variate normal m	odel	
xact tests	Παιγ			
tests (² tests	te required sample	SIZE .		1
z tests	5		Output Parameters	
	Tail(s)	One 🔻	Lower critical r	
Determine =>	Correlation p H1	0.3	Upper critical r	7
	α err prob	0.05	Total sample size	7
Po	wer (1-β err prob)	0.95	Actual power	7
	Correlation p H0	0		

The default selection for "Test family" is "t tests." Use the arrow to toggle to "Exact." We'll use the default selection for "Statistical test," which is "Correlation: Bivariate normal model."

Correlation: A priori power

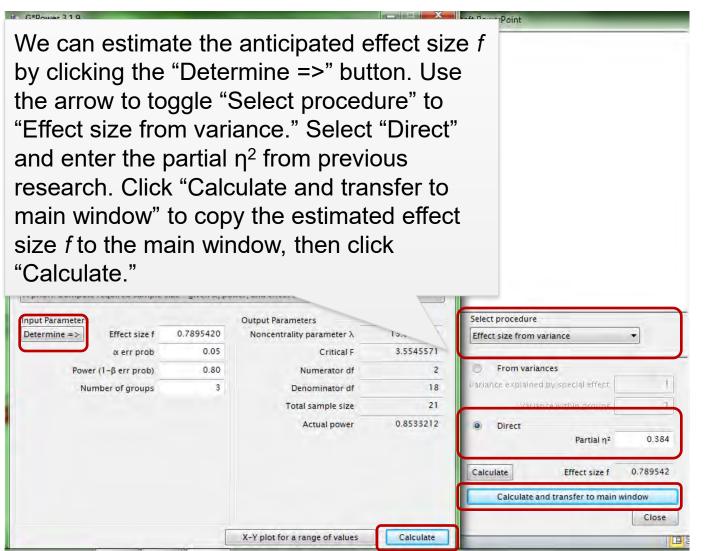
The "Input Parameters" for computing *a priori* power must be specified: 1.One or two tailed test 2.Anticipated correlation coefficient value 3.Alpha level 4.Desired power 5.Correlation coefficient under the null hypothesis (H0)

"Output Parameters" provides the relevant statistics given the input specified. Based on the parameters specified, we need a sample size of 84.


e <u>E</u> dit <u>V</u> iew <u>T</u> ests <u>C</u> alcula	100 1100		
			_
Central and noncentral distributi	ons Protocol of por	wer analyses	
Test family Statistical te	c+		
	ed effects, omnibus,	000-1000	
	ed enects, onimbus,	one-way	j * _
Type of power analysis	10110-100-000		
A priori: Compute required sam	ple size – given a, po	ower, and effect size	•
Input Parameters		Output Parameters	_
Determine all Effect along	f 0.25	Noncentrality parameter λ	?
Determine => Effect size			
a err prol	b 0.05	Critical F	?
		Critical F Numerator df	
α err prol	o) 0.95		?
α err prol Power (1-β err prob	o) 0.95	Numerator df	? ?
α err prol Power (1-β err prob	o) 0.95	Numerator df Denominator df Total sample size	? ? ?
α err prol Power (1-β err prob	o) 0.95	Numerator df Denominator df	? ? ? ?
α err prol Power (1-β err prob	o) 0.95	Numerator df Denominator df Total sample size	? ? ? ?
α err prol Power (1-β err prob	o) 0.95	Numerator df Denominator df Total sample size	? ? ? ?
α err prol Power (1-β err prob	o) 0.95	Numerator df Denominator df Total sample size	? ? ? ?
α err prol Power (1-β err prob	o) 0.95	Numerator df Denominator df Total sample size	? ? ? ?
α err prol Power (1-β err prob	o) 0.95	Numerator df Denominator df Total sample size	? ? ? ?

One-factor ANOVA: A priori power

Use the arrow to toggle the "Test family" to "F tests." Use the arrow to toggle "Statistical test" to select "ANOVA: Fixed effects, omnibus, one-way."


Power Analysis Software

One-factor ANOVA: A priori power

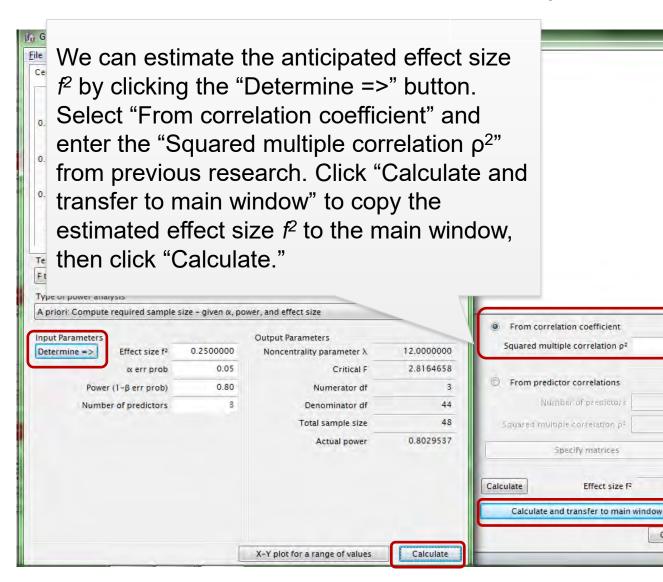
One-factor ANOVA: A priori power

Type of power analysis A priori: Compute required sample size – given α, power, and effect size nput Parameters Determine => Effect size f ² 0.15 α err prob 0.05 Power (1-β err prob) 0.80 Number of predictors 3 Output Parameters Denominator df Total sample size Actual power 2	e <u>E</u> dit <u>V</u> iew	Tests Calculator	<u>H</u> elp			
F tests Linear multiple regression: Fixed model, R² deviation from zero Type of power analysis A priori: Compute required sample size – given α, power, and effect size nput Parameters Determine => Effect size f² 0.05 Power (1-β err prob) 0.80 Number of predictors 3 Output Parameters Number of predictors Actual power 2	Central and nonce	ntral distributions	Protocol of po	wer analyses		
F tests Linear multiple regression: Fixed model, R² deviation from zero Type of power analysis A priori: Compute required sample size – given α, power, and effect size nput Parameters Determine => Effect size f² 0.05 Power (1-β err prob) 0.80 Number of predictors 3 Output Parameters Denominator df 7 Total sample size 2 Actual power						
F tests Linear multiple regression: Fixed model, R² deviation from zero Type of power analysis A priori: Compute required sample size – given α, power, and effect size nput Parameters Determine => Effect size f² 0.15 α err prob 0.05 Power (1-β err prob) 0.80 Number of predictors 3						
F tests Linear multiple regression: Fixed model, R² deviation from zero Type of power analysis A priori: Compute required sample size – given α, power, and effect size nput Parameters Determine => Effect size f² 0.15 α err prob 0.05 Power (1-β err prob) 0.80 Number of predictors 3						
tests Linear multiple regression: Fixed model, R² deviation from zero Type of power analysis A priori: Compute required sample size – given α, power, and effect size nput Parameters Determine => Effect size f² 0.15 α err prob 0.05 Power (1-β err prob) 0.80 Number of predictors 3						
tests Linear multiple regression: Fixed model, R² deviation from zero ype of power analysis A priori: Compute required sample size – given α, power, and effect size nput Parameters Determine => Effect size f² 0.15 α err prob 0.05 Power (1-β err prob) 0.80 Number of predictors 3						
tests Linear multiple regression: Fixed model, R² deviation from zero ype of power analysis A priori: Compute required sample size – given α, power, and effect size nput Parameters Determine => Effect size f² 0.15 α err prob 0.05 Power (1-β err prob) 0.80 Number of predictors 3						
tests Linear multiple regression: Fixed model, R² deviation from zero ype of power analysis A priori: Compute required sample size – given α, power, and effect size nput Parameters Determine => Effect size f² 0.15 α err prob 0.05 Power (1-β err prob) 0.80 Number of predictors 3	and family.	Constanting and				
ype of power analysis A priori: Compute required sample size - given α, power, and effect size nput Parameters Determine => Effect size f ² 0.15 α err prob 0.05 Power (1-β err prob) 0.80 Number of predictors 3 Total sample size 2 Actual power 2			regression: Eive	d model D2 deviation from zero	+	
A priori: Compute required sample size – given α, power, and effect size nput Parameters Determine => Effect size f ² 0.15 α err prob 0.05 Power (1-β err prob) 0.80 Number of predictors 3 Denominator df 2 Total sample size 2 Actual power 2		Land and the second	regression. rixe	a model, K- deviation nom zero		
Output Parameters Output Parameters Determine => Effect size f ² 0.15 α err prob 0.05 Power (1- β err prob) 0.80 Number of predictors 3 Output Parameters 2 Number of predictors 3 Denominator df 2 Actual power 2						
Determine => Effect size f^2 0.15 Noncentrality parameter λ 7 α err prob 0.05 Critical F 1 Power (1- β err prob) 0.80 Numerator df 7 Number of predictors 3 Denominator df 7 Total sample size 7 Actual power 7	A priori: Compute	e required sample	size – given α, po	ower, and effect size	-	
α err prob 0.05 Critical F Power (1-β err prob) 0.80 Numerator df 7 Number of predictors 3 Denominator df 7 Total sample size 7 2 2 Actual power 7 2	nput Parameters			Output Parameters		
Power (1-β err prob) 0.80 Numerator df 7 Number of predictors 3 Denominator df 7 Total sample size 7 Actual power 7	Determine =>	Effect size f ²	0.15	Noncentrality parameter $\boldsymbol{\lambda}$	7	
Number of predictors 3 Denominator df 7 Total sample size 7 Actual power 7		α err prob	0.05	Critical F	þ	
Total sample size 7 Actual power 7	Power (1-β err prob)		0.80	Numerator df	7	
Actual power	Number of predictors		3	Denominator df	7	
				Total sample size	?	
				Actual power	7	
				and the second		
X-Y plot for a range of values Calculate			F	V. Walay Farry and a farry	Calculate	

Multiple Linear Regression: A priori power

Use the arrow to toggle the "Test family" to "F tests." Use the arrow to toggle "Statistical test" to select "Linear multiple regression: Fixed model, R² deviation from zero."

The "Input Parameters" to compute *a priori* power must be specified: 1.Anticipated Effect size f² 2.Alpha level 3.Desired power 4.Number of predictors in your model.


Multiple Linear Regression: A priori power

0.2

З

0.25

Close

G*Power 3 Website and Free Download

http://www.gpower.hhu.de/en.html

Abraham, W. T., & Russell, D. W. (2008). Statistical power analysis in psychological research. *Social and Personality Psychology Compass*, *2*(1), 283-301.

Cohen, J. 1988. Statistical power analysis for the behavioral sciences (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

Ellis, P. D. (2010). *The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results.* Cambridge University Press.

Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. *Behavior research methods*, *39*(2), 175-191.

Hoenig, J. M., & Heisey, D. M. (2001). The abuse of power. *The American Statistician*, 55(1).

Levine, M., & Ensom, M. H. (2001). Post hoc power analysis: an idea whose time has passed? *Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy*, *21*(4), 405-409.

Murphy, K. R. & Myors, B. (2004). *Statistical power analysis: A simple and general model for traditional and modern hypothesis tests* (2nd ed.). Mahwah, NJ: Lawrence Erlbaum Associates.

O'Keefe, D. J. (2007). Brief report: post hoc power, observed power, a priori power, retrospective power, prospective power, achieved power: sorting out appropriate uses of statistical power analyses. *Communication Methods and Measures*, *1*(4), 291-299.

Peng, C. Y. J., Long, H., & Abaci, S. (2012). Power analysis software for educational researchers. *The Journal of Experimental Education*, *80*(2), 113-136.

Thomas, L., & Krebs, C. J. (1997). A review of statistical power analysis software. *Bulletin of the Ecological* Society of America, 78(2), 126-138.

The Essential Guide to Effect Sizes: Statistical Power, Meta-analysis, and Interpretation of Research Results by Paul D. Ellis is available as an e-book through the OSU library.

	II D. EII ambridge University Press, 2010			
Book				
Book LOCATION	CALL NO.	YEAR	STATUS	NOTE